
Surviving Client/Server:
TTable vs TQuery
by Steve Troxell

One of the most frequently
asked questions from Delphi

programmers entering the world of
client/server is “Should I use TTable
or TQuery to access client/server
tables?”. It may be more productive
to analyze each component’s
strengths and weaknesses so we
may better understand when it is
appropriate to use one or the
other. In this issue we’ll discuss the
relative merits of these two compo-
nents when they are used with
client/server databases. Unless
otherwise indicated, all discussion
of ‘tables’ refers to a table within a
client/server database.

TTable
The single biggest advantage of
TTable is that it provides the most
portable data access if you want
the same front-end client to oper-
ate with multiple back-end servers.
However, TTable really seems to
have been designed with desktop
databases like Paradox and dBase
in mind. While it functions with SQL
databases, it isn’t the all-purpose
table tool you might imagine.

Relational databases (ie SQL
databases) are designed to be
manipulated in sets. That is, opera-
tions are performed on one or
more related records in one batch
through a query, unlike more tradi-
tional databases which permit full
freedom to navigate forwards and
backwards and to move to specific
records within the table. SQL
tables are designed to be queried
through the SQL language, which is
what TQuery is good at. Unfortu-
nately, the SQL language is not well
suited for table navigation, which
is what TTable is good at. In straight
SQL syntax, there is no mechanism
for a ‘previous’ record, or ‘last’ re-
cord, or other navigation concepts
you take for granted in traditional
databases. Some SQL servers pro-
vide ‘scrollable cursors’ which are

navigable pointers within an SQL
result set, but this is not wide-
spread and not all vendors’ cursors
are fully navigable both backwards
and forwards. Furthermore, these
cursors typically operate upon a
result set obtained through an SQL
query, rather than being inherent
to the table itself.

This paradigm shift in database
design is a very important aspect
to keep in mind when designing
your front-end. Many database
applications employ file browsers
and let the user scroll freely
through a particular file, but large
client/server tables are not well
suited to the browser concept.
Some alternative approaches
include populating a combo box
with key values from the records,
or providing a search dialog that
lets the user narrow down the
choices into a more manageable
list. In either case, the user selects
a particular record from the list
and then the entire record can be
retrieved and displayed.

The significant issue with TTable
and client/server is that all TTable
actions are ultimately translated
into SQL queries to be processed
by the server and you have lost
control over how and when those
SQL queries are made. For exam-
ple, a frequent complaint among
Delphi client/server users is that
just opening a TTable can take
upwards of 15 to 20 seconds. The
truth is that the time it takes TTable
to open an SQL table is directly
proportional to the size of the table
being opened. TTable.Open actually
issues a series of SQL queries to
obtain information about all the
columns, indexes and defaults
used in the table. This information
is gathered only the first time the
table is opened. After that, it issues
a SELECT query that retrieves all of
the columns and all of the rows
from the table ordered by the index

field (or the primary key if no index
is specified). This is done each time
the table is opened. Only the first
row of this result set is returned to
the client (or as many as are
needed to populate data-aware
controls), but the server is still
going to build a result set in
response to the query. So you can
see that if you try to use TTable to
read one value from one row of a
very large table, just opening the
TTable is going to take some time.
This demonstrates the inherent
weakness of TTable in client/server:
you’ve lost control over the SQL
being sent to the server to perform
your tasks; you are at the mercy of
the Borland Database Engine.

The upside is that TTable is
generally fine for accessing small
client/server tables of a few thou-
sand records. You’ll have to do
some testing to determine where
the point of diminishing returns is
for your system. In some cases,
such as the TDBLookupCombo compo-
nent, you have no choice but to use
a TTable. There are some third-
party components similar to
TDBLookupCombo that claim to accept
TQuery datasets, but you have to
look under the hood. Some of them
simply copy the results of the
query into a temporary table and
use TTable to access it. In these
cases you have to consider the
overhead of creating, populating,
and disposing of the temporary
table.

Record Retrieval
Is there any advantage to using
TTable to look up a record using
FindKey rather than an SQL query?
Not necessarily. First, FindKey is
restricted to searching only in-
dexed fields and the only way to
search on more than one field is if
the fields you are interested in are
covered by one or more indexes.
An SQL query, on the other hand,

January 1996 The Delphi Magazine 27

can search based on any number of
fields in the table, whether they are
indexed or not. Granted, non-
indexed fields are going to be
slower to search on, but an SQL
query performed at the server will
be faster than a sequential search
done through TTable in the client
application.

Second, FindKey will ultimately
send the server a SELECT statement
with a WHERE clause to return the
desired record; the same thing you
would do with an SQL query.
However, FindKey will fetch all of
the fields of the record back from
the server (despite how many
fields you selected in the TTable’s
Fields Editor). With your own SQL
query, you could request only the
fields you were interested in. With
large records where only a few
fields are of interest, you could
conceivably improve performance
considerably.

FindNearest, however, is not
easily emulated with SQL queries.
Given a non-existent value to
search for, FindNearest returns the
record after the point in the
sequence where the requested
value should be. Assuming we are
searching the Name field of the
Customer table for the nearest
match to ‘Troxell, Steve’, we can
almost emulate this functionality
with the query shown in Figure 1.

However, this won’t give you just
the one row after the point where
‘Troxell, Steve’ ought to be in the
sequence; this gives you all the
rows after ‘Troxell, Steve’. It turns
out that this is exactly the query
used by TTable.FindNearest on SQL
tables (the entire query is proc-
essed, but only the first row of the
result set is sent back to the client).

A much more efficient way to
emulate FindNearest would be to
use a nested query to find the value
and then retrieve the matching
record; as shown in Figure 2.

In a nested query (sometimes
referred to as a ‘sub-query’), the
inner SELECT statement is proc-
essed first and its results are fed
into the outer statement. Here, the
inner statement finds the lowest
order value of the Name field that
satisfies the condition that it is
greater than or equal to ‘Troxell,

Steve’. This value is then used in
the WHERE clause of the outer state-
ment to retrieve that particular re-
cord. The server does much less
processing to evaluate the aggre-
gate function MIN in the inner state-
ment than the brute force query
which is used by TTable.Find-
Nearest. Again, you don’t have con-
trol with TTable.

Other problems with FindKey and
FindNearest are the actions of Prior
and Next after establishing a posi-
tion with one of the Find methods.
For example, FindKey is going to
issue a query that returns a result
set of at most (assuming no dupli-
cate values) one record (the one
that matches the key value). What
happens if you use the Next method
to scroll to the next record? There
is no next record in the result set
returned by FindKey, but there
should be a next record in the ac-
tual table. In this case, TTable.Next
issues a query very much like that
shown above for FindNearest, with
the key value you used in FindKey
as the point of comparison. For
example, if you were to use
FindKey([’Troxell, Steve’]) fol-
lowed by Next, the query sent by
Next is similar to Figure 1, but
would be ‘>’ instead of ‘>=’.

TQuery
TQuery encapsulates one or more
SQL statements, executes them,
and provides methods by which
you can manipulate the results. As
you have seen from the past two
issues, SQL provides some power-
ful capabilities in its own right.
Queries can be divided into two
categories: those that produce
result sets (such as a SELECT state-
ment) and those that don’t (such
as an UPDATE or INSERT statement).
Use TQuery.Open to execute a query
that produces a result set; use
TQuery.ExecSQL to execute queries
that do not produce result sets.

Once you call Open, the query is
sent to the server to be processed
and the first row of the result set is

returned to the client application.
Subsequent rows are generally not
passed back to the client until you
specifically request them by
navigating through the result set.
With a result set, you can do most
of the same tasks you can with a
TTable: you can navigate using the
same First, Next, Prior, etc meth-
ods found in TTable or with the
TDBNavigator component, you can
link to data-aware controls via a
TDataSource and you can edit the
result set, provided the query
conforms to certain restrictions
(more on that in a minute).

Unidirectional Movement
An important little property to
keep in mind when working with
TQuery is the Unidirectional prop-
erty. If your SQL server does not
support bi-directional cursors
(that is, you can only move for-
wards through the result set, not
backwards), then you must set this
property to False (the default) if
you want your application to be
able to navigate both forward and
backward through the result set.
For example, if you have a TDBGrid
bound to the dataset, with
Unidirectional set to False Delphi
emulates bi-directional movement
by buffering the records internally
in the client application as they are
returned from the server.

You may be concerned by this
approach if you anticipate a large
result set, because resources
could be consumed rapidly. If you
only need to traverse forward
through the result set, then you
can set Unidirectional to True, and
Delphi will not buffer the records.
If you only need to walk through a
result set once, then doing so with
Unidirectional set to True can be a
bit faster since Delphi doesn’t have

SELECT * FROM customer
 WHERE name = (SELECT MIN(name) WHERE name >= “Troxell, Steve”)

➤ Figure 2

SELECT * FROM customer
 WHERE name >= “Troxell, Steve”
 ORDER BY name

➤ Figure 1

28 The Delphi Magazine Issue 5

to go through the overhead of
buffering the records. However, if
you are going to traverse the result
set many times, for example with
a TDBGrid, setting Unidirectional to
False may be a bit faster, since the
rows will be read from the buffer
instead of the server.

Some of the navigation methods
are misleading when used on
‘forwards only’ datasets. For exam-
ple, TQuery.Last actually moves
beyond the end of the dataset and
‘backs up’ one record. Since this
backwards movement is illegal,
you will get a ‘Capability not
supported’ exception.

Modifiable Datasets
By default, TQuery returns a read-
only result set and this is also a bit
faster than a modifiable result set
(which Delphi refers to as a ‘live’
result set). With a live result set
you can use the same editing tech-
niques (methods or data-aware
controls) as with a TTable. To get a
live result set, you must first set the
RequestLive property to True.
Second, you must use a SELECT
statement that meets the following
requirements:
➣ Conforms to Local SQL syntax

(see the Delphi on-line help),
➣ Involves only one table or

editable view,
➣ Does not use aggregate

functions,
➣ Does not use an ORDER BY clause,
➣ The table must have a unique

index if it is on a Sybase or
Microsoft SQL server.

For live result sets, Delphi converts
your SQL query into Query-By-
Example syntax. The restrictions
listed above ensure that your
query can be converted into the
QBE syntax. You can examine the
CanModify property to determine if
your TQuery has met all of the
requirements to be editable.

Dynamic SQL Statements
The SQL query does not have to be
hard-coded at design-time through
the SQL property editor. The SQL
property can be set through code
at runtime to produce ‘dynamic
SQL’. This can be very powerful,
since you can construct state-
ments in response to user actions.

Take a look at the screen shot in
Figure 3. This demonstrates a
common technique used in client/
server applications to allow users
to pick from a list of choices after
the list has been narrowed by one
or more search criteria. This is an
inventory search dialog for a tire
store and the user is expected to
supply one or more of: a part manu-
facturer, a part size, or a part
description. The program con-
structs an SQL SELECT statement
with a WHERE clause that reflects the
values present in the edit boxes. If
the user does not supply a value for
one of the search fields, it isn’t
included in the WHERE clause.

When the user presses the Find
button, the code shown in Listing 1
interprets the search values given
and constructs an appropriate SQL
query to find the matching records.
The part manufacturer entry field
will match against any record with
a manufacturer that starts with the
text the user entered, so we use the
LIKE operator and append the SQL
wildcard % to the text. The part size
and part description fields can be
any text anywhere in the field, so
again we use LIKE and appropriate
wildcard characters. With the
screen filled out as shown in Figure
3, the SQL query shown in Figure 4
would be produced.

➤ Figure 3

procedure TForm1.FindBtnClick(Sender: TObject);
var WhereClause: string;
begin
 WhereClause := ’’;
 if Mfg.Text <> ’’ then
 WhereClause := ’Manufacturer LIKE “’ + Mfg.Text + ’%”’;
 if Size.Text <> ’’ then begin
 if WhereClause <> ’’ then WhereClause := WhereClause + ’ and ’;
 WhereClause := WhereClause + ’Size LIKE “%’ + Size.Text + ’%”’;
 end;
 if Desc.Text <> ’’ then begin
 if WhereClause <> ’’ then WhereClause := WhereClause + ’ and ’;
 WhereClause := WhereClause + ’Description LIKE “%’ + Desc.Text + ’%”’;
 end;
 if WhereClause = ’’ then
 raise Exception.Create(’At least one search field must be entered’);
 Query1.Close;
 Query1.SQL.Clear;
 Query1.SQL.Add(’SELECT * FROM Inventory WHERE ’ +
 WhereClause + ’ ORDER BY PartNo’);
 Query1.Open;
end;

➤ Listing 1

SELECT * FROM Inventory
 WHERE Manufacturer LIKE “GOOD%” AND Size LIKE “%R15%”
 ORDER BY PartNo

➤ Figure 4

January 1996 The Delphi Magazine 29

This is just a small example of the
flexibility you have with dynami-
cally created SQL statements. You
can see how several different
search fields can be added, and the
user can fill out as many or as few
as they desire to narrow their
search. Another possibility would
be adding radio buttons to control
whether the search will be the
intersection of matching records
(by using a logical AND between
operators) or the union of match-
ing records (by using a logical OR
between operators). It would be
very difficult to construct a search
engine with this much flexibility
using just TTable methods.

Parameterized Queries
If you wanted a query to return a
row that matches a specific key
value, you could assemble the SQL
statement at run-time as shown
above, or you could hard-code the
SQL statement through the prop-
erty editor and use a substitution
parameter for the key value:

SELECT * FROM atable
 WHERE cust_id = :customer_no

Here cust_id is the name of an inte-
ger field in the table atable.
Customer_no is an arbitrary name
for the parameter. It is called a sub-
stitution parameter because you
will assign a value to the parameter
and that value will be substituted
in place of the parameter when the
query is executed. For example, if
you wanted to find the record with
cust_no equal to 1234, you would
assign the value to the parameter
before executing the query (see
Listing 2).

Notice that the parameter name
is preceded by a colon in the SQL
statement, but you do not use
the colon when referencing the
parameter with ParamByName.

You should be wary of using a lot
of parameters on separate lines.
For example, you may have an
INSERT statement with a large num-
ber of fields and you may decide to
list each field value on a separate
line in the SQL property, as shown
in Figure 5.

When a Delphi form containing a
TQuery component is created at

runtime, the SQL property is built
one line at a time from the compo-
nent stream. As the SQL is built,
Delphi keeps an internal list of the
parameters found. Unfortunately,
as each new line of SQL code is
added, the internal parameter list
is destroyed and rebuilt from the
first line of SQL down to the current
line. To put this in perspective, if
you have a TQuery component with
an SQL statement having 25
parameters all on separate lines,
when that TQuery is created at run-
time, the internal list of parameters
is destroyed and rebuilt 25 times
with 325 total inserts into the list
(only 25 will remain in the list after
the last destroy/build iteration).
This may not seem like much, but
it does add a few seconds to the
form creation.

In one of our projects, we had a
small form created on demand at
runtime. Adding three TQueries
with a total of 75 parameters
between them (one on each line)
increased the form creation time
from a fraction of a second to over
3 seconds. Not devastating, but
quite annoying to the user. When
we crammed all the parameters on
just a few lines the time dropped
back down to under a second.

‘Preparing’
Parameterized Queries
If you are going to re-use the same
parameterized query repeatedly
(for example in a loop), you can
improve performance by explicitly
‘preparing’ the query once before

the first use. All SQL queries
ultimately get sent to the server
where they are parsed, validated,
compiled and executed. The
TQuery.Prepare method sends the
SQL statement to the server to
complete the preliminary steps of
parsing, validation, and compiling.
In this way, these preliminary steps
are performed only once instead of
each time you execute the query
from your Delphi application. If you
use Prepare, you must also use
Unprepare when you are through
with the query. Prepare consumes
resources in the database (and
apparently in the application as
well) and you must pair up each
Prepare with an Unprepare to
release those resources. Listing 3
illustrates this technique.

With a parameterized query, you
can still change the values of the
parameters in the compiled form of
the query. However, if you change
the SQL statement through code,
you will have to ‘prepare’ it again.
So, in Listing 3, if you chose to
construct the SQL statement from
code with the appropriate
customer number already in place,
you will defeat the advantages of
preparing the query in advance.
The Prepare method, if used, must
be called after the SQL statement
has been defined. If you define your
SQL statements at design time with
the property editor, you may want
to put your Prepare call in the
form’s OnCreate event handler and
the Unprepare call in the form’s
OnDestroy event handler.

Query1.ParamByName(’customer_no’).AsInteger := 1234;
Query1.Open;

➤ Listing 2

INSERT INTO ATable (
 Name,
 Address,
 City,
 (...a whole bunch of fields...)
 DateOfBirth)
VALUES(
 :Name,
 :Address,
 :City,
 (...a whole bunch of parameters...)
 :DateOfBirth)

➤ Figure 5

30 The Delphi Magazine Issue 5

Conclusion
The prevailing wisdom for conven-
tional databases (eg Paradox and
dBase) is to use TTable wherever
possible and only resort to TQuery
when a task is beyond the capabili-
ties of TTable. In the client/server
world, however, most of the time
the opposite is true.

Remember that paradigm shift in
database methodology: client/
server tables are meant to be
manipulated in record sets. If
you’re building a conventional
database application in anticipa-
tion of eventually upsizing to
client/server, be very careful about
your choice of data access. What

Query1.SQL.Clear;
{ the next line shows the SQL statement being used in the query }
Query1.SQL.Add(’Select * from ATable where cust_no = :customer_no’);
Query1.Prepare;
try
 for I := 1 to 1000 do begin
 Query1.ParamByName(’customer_no’).AsInteger := I;
 Query1.Open;
 try
 { do stuff with the returned record }
 finally
 Query1.Close;
 end;
 end;
finally
 Query1.Unprepare;
end;

➤ Listing 3

may work just fine in a small local
system may limp along like a three-
legged dog in a high-volume
client/server environment.

Contrary to much of the market-
ing hype, scaling up to client/
server is not necessarily just a
simple matter of changing the alias
definition.

Steve Troxell is a Software
Engineer with TurboPower
Software where he is developing
Delphi Client/Server applications
using InterBase and Microsoft SQL
Server for parent company Casino
Data Systems. Steve can be
reached on the internet at
stevet@tpower.com and also on
CompuServe at 74071,2207

January 1996 The Delphi Magazine 31

	TTable
	Record Retrieval
	TQuery
	Unidirectional Movement
	Modifiable Datasets
	Dynamic SQL Statements
	Parameterized Queries
	"Preparing" Parameterized Queries
	Conclusion

